Jump to content

Researchers Develop Quantum Processor


Recommended Posts

A computer chip based on the esoteric science of quantum mechanics has been created by researchers at the University of Michigan. The chip might well pave the way for a new generation of supercomputers.


Employing the same semiconductor-fabrication techniques used to create common computer chips, the Michigan team was able to trap a single atom within an integrated chip and control it using electrical signals.


Two Places at Once


As of yet, the technology is not applicable to typical desktop PCs or servers, but quantum computers are said to be promising because they can solve complicated problems using massively parallel computing.


That is accomplished by the quirky nature of quantum mechanics, said Christopher Monroe, a physics professor and the principal investigator and co-author of the paper "Ion Trap in a Semiconductor Chip." He explained that that chips can process multiple inputs at the same time in the same device.


"With quantum mechanics, an object can be in two places at the same time, as long as you don't look at it," he said. The quantum computer architecture can store quantum bits (qubits) of information, where each qubit can hold the numbers one or zero, or even both digits simultaneously.


When a qubit is added to a quantum system, the computing power doubles. Thus, the quantum machine can crunch numbers at a rate that is exponentially faster than conventional processors, said Monroe.


New Spin on Semiconductors


Electrically charged atoms (ions) for such quantum computers are stored in traps in order to isolate the qubits, a process that is essential for the system to work.


The challenge is that current ion traps can hold only a few atoms, or qubits, and are not easily scaled, making it difficult to create a quantum chip that can store thousands or more atomic ions. A string of such atoms, in theory, could store thousands of bits of information.


In the chip created at Michigan, which is the size of a postage stamp, the ion is confined in a trap while electric fields are applied. Laser light puts a spin on the ion's free electron, enabling it to flip it between the one or zero quantum states.


The spin of the electron dictates the value of the qubit. For example, an up-spin can represent a one, or a down-spin can represent a zero -- or the qubit can occupy both states simultaneously.


Applications for Cryptography


The quantum processor is made of gallium arsenide in a layered structure and etched with electrodes using the same type of lithography process as those used to create today's computer chips. Each electrode is connected to a separate voltage supply, and these various electrical voltages control the ion by moving as it hovers in a space carved out of the chip.


The next step is to build a bigger chip with many more electrodes, so that it can store more ions. There still is a lot of work to be done to learn how to control lots of ions in one of these chips. It won't be nearly as easy as it was with conventional computer chips, but at least we know what to do in principle, Monroe said.


"This type of integrated chip structure is significant because it demonstrates a way to scale the quantum computer to bigger systems," Monroe said. "It has applications for processing very large [data sets] such as in cryptography, for example, and there is a lot of interest in this by the government."





Link to comment
Share on other sites

  • 8 years later...

I've read about this technology in a time traveler claim thread, just don't recall which one. They said they place a wiretap on the old fiber optics of a past time communication system that survived to their present, to intercept the recordings to have a parallel database, if the original database wasn't available. Think of a stent or a siphon.


Makes me think the only way to detect this 2-places-at-once tech is to have a neutrino camera or satellite. A fresh image will be whole, a wiretapped intercepted image will be ...blurry?


I think an atom can be in a myriad of places as long as you don't look at it, not just two. Depends, how many electrons does it have? That's how many places it can be? Or is it the obverse? I don't know.


Seen similar quantum computing/teleportation with indium gallium arsenide. The purple metal, I had to start with when I got that, because I'm not a chemistry scholar. About 500 years ahead of now, hypothetically.



Link to comment
Share on other sites


  • Create New...